## Highly Chromic, Proton-Responsive Phenyl Pyrimidones

## Jyothi Dhuguru, Chirag Gheewala, N. S. Saleesh Kumar, and James N. Wilson\*

Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33124, United States

jnwilson@miami.edu

Received June 3, 2011

ORGANIC **LETTERS** 2011 Vol. 13, No. 16 4188–4191



ABSTRACT

Aryl pyrimidones are pharmacologically relevant compounds whose optical properties have only been partially explored. We report the synthesis and optical characterization of a series of aryl- and diaryl-2(1H)-pyrimidones. The electronic transitions of these chromophores are modulated by the extent of conjugation between the pendant phenyl ring and the pyrimidone core as well as the presence of electron-donating auxochromes. Monoprotonation of the pyrimidone ring results in large hyperchromic and bathochromic shifts as well as switching of fluorescence making these phenyl pyrimidones of interest as sensory materials.

The pyrimidone moiety is one of the most prevalent, biologically relevant heterocycles; it is featured prominently in nucleic acid chemistry<sup>1</sup> and in many pharmacologically active compounds.<sup>2</sup> In the latter context, arylsubstituted pyrimidones have been examined as kinase inhibitors, antimicrobials, and analgesics. $3$  The hydrogen bonding pyrimidone core coupled to a hydrophobic aryl substituent promotes several modes of interaction in binding to a biomacromolecular target. This structural motif also makes arylpyrimidones of interest as optically active materials, particularly for the 4-aryl and 4,6-diarylpyrimidones.

Only a few reports have investigated their photophysical properties.4,5 Wu et al.4 examined a series of asymmetric 4,6-diarylpyrimidones and identified a  $\text{Zn}^{2+}$  responsive ligand; coordination of the metal ion via the pyrimidone core resulted in an increase in fluorescence. This behavior may be extended to the arylpyrimidones with biological activity provided interactions with the pyrimidone moiety, such as protonation or hydrogen bonding, induce a similar optical response. For example, Shafer et al. $3a$  recently reported a family of 4, 6-diarylpyrimidone-based inhibitors of CDC7 serine/threonine kinase with nanomolar affinities. These extended aromatic frameworks suggest the possibility of self-reporting ligands, provided a distinct optical response is generated upon binding.

To gain insights into the optical properties of arylpyrimidone constructs and their response to protonation, we have synthesized a family of "double armed" 1-ethyl-4,6-diphenyl-2(1H) pyrimidones (1c, 2c, and 3c, Figure 1) and their "single-arm" derivatives, 1-ethyl-4-phenyl-2(1H) pyrimidones and 1-methyl-6-phenyl- $2(1H)$  pyrimidones (1a, 1b, 2a, 2b, 3a and 3b). The absorption and emission wavelengths are modulated through substitution to the aryl

<sup>(1) (</sup>a) Wang, G.; Tam, R. C.; Gunic, E.; Du, J.; Bard, J.; Pai, B. J. Med. Chem. 2000, 43, 2566–2574. (b) Winkley, M. W.; Robins, R. K. J. Org. Chem. 1969, 34, 431–434. (c) Chun, B. K.; Song, G. Y.; Chu, C. K. J. Org. Chem. 2001, 66, 4852–4858.

<sup>(2) (</sup>a) Zhu, Y.-F.; Guo, Z.; Gross, T. D.; Gao, Y.; Connors, P. J.; Struthers, R. S.; Xie, Q.; Tucci, F. C.; Reinhart, G. J.; Wu, D.; Saunders, J.; Chen J. Med. Chem. 2003, 46, 1769–1772. (b) Zhang, Z.; Wallace, M. B.; Feng, J.; Stafford, J. A.; Skene, R. J.; Shi, L.; Lee, B.; Aertgeerts, K.; Jennings, A.; Xu, R.; Kassel, D. B.; Kaldor, S. W.; Navre,M.; Webb, D. R.; Gwaltney, S. L. J. Med. Chem. 2010, 54, 510–524.

<sup>(3) (</sup>a) Shafer, C. M.; Lindvall, M.; Bellamacina, C.; Gesner, T. G.; Yabannavar, A.; Jia, W.; Lin, S.; Walter, A. Bioorg. Med. Chem. Lett. 2008, 18, 4482–4485. (b) Prasad, Y. R.; Rajasekhar, K. K.; ShankarananthV.; Maulaali, S. C.; Kumar, G. S. S. P.; Reddy, K. N. J. Pharm. Res. 2010, 3, 2291–2292. (c) Keri, R. S.; Hosamani, K.M.; Shingalapur, R. V.; Hugar, M. H. Eur. J. Med. Chem. 2010, 45, 2597–2605.

<sup>(4)</sup> Nishio, T.; Omote, Y. J. Chem. Soc., Perkin Trans. 1 1984 239–242.

<sup>(5)</sup> Wu, H.; Chen, X.-m.; Wan, Y.; Ye, L.; Xin, H.-q.; Xu, H.-h.; Pang, L.-l.; Ma, R.; Yue, C.-h. J. Chem. Res. 2008, 711–714.



Figure 1. Structures of phenylpyrimidones  $1a-3c$  and representative synthesis of 1c.

arms, and the diaryl compounds in particular show a strong chromic and emission response upon protonation.

1a–3c were synthesized via acid-catalyzed condensation of ethylurea with the appropriate diketone (Figure 1).<sup>6,7</sup> The single arm 4-phenyl-pyrimidone and 6-phenyl-pyrimidone isomers were isolated from the same reaction and separated by column chromatography. Use of an alkyl urea allows evaluation of the unique isomers, avoiding tautomeric equilibria. Yields were moderate, ranging from 36% (both isomers) in the case of 1a and 1b (25% and  $11\%$ , respectively) to 19% in the case of 2c. The crystalline solids appeared colorless  $(1a-c)$  to bright yellow  $(3a-c)$ demonstrating the effect of the electron-donating methoxy and dimethylamino auxochromes on the arylpyrimidone core.

Identification and structural assignment of the isomers were made on the basis of <sup>1</sup>H NMR and 1D-NOE spectra. Density functional calculations at the 6-31G\* level (M06 basis set) $\delta$  reveal that the pendant phenyl substituent is twisted in the case of the 6-phenyl-pyrimidones (1b, 2b, 3b), while, in the case of the 4-phenyl-pyrimidones (1a, 2a, 3a), the aromatic framework is essentially planar. Thus, the chemical shifts of the aromatic protons,  $H_a$  and  $H_b$  (shown for 1a and 1b, Figure 2), are expected to vary as a function of aromatic ring current.<sup>9</sup> Inspection of the aromatic region of the <sup>1</sup>H NMR spectra of 1a and 1b reveals that



Figure 2. Structural assignment of 4-phenyl- and 6-phenyl- $2(1H)$ -pyrimidone isomers based on optimized geometries (DF  $6\text{-}31G^*$ ) and <sup>1</sup>H NMR spectra.

for 1a the protons  $H_a$  are shifted downfield by 0.13 ppm relative to 1b. The electron-withdrawing nature of the pyrimidone core exerts an additional effect in the planar aromatic system of 1a, leading to increased deshielding of  $H<sub>b</sub>$  protons that are shifted even further downfield by 0.50 ppm relative to 1b. 1D-NOE spectra confirm the assignment of the two isomers: irradiation of the  $\alpha$ -carbon protons of the N-ethyl substituent reveals an NOE on the adjacent 6-methyl group for 1a; for 1b, the effect is observed on the phenyl protons,  $H_b$  (see Supporting Information).

We investigated  $1a-3c$  by UV-vis and fluorescence spectroscopy to determine how conjugation between the pendant aryl arms and the pyrimidone core may influence the optical properties of the chromophores. We also obtained spectra in the presence of TFA to examine the effects of monoprotonation at  $N3^{10}$  on the optical response of these aromatic molecules. The steric interference between the 6-phenyl and N-ethyl substituents of 1b, 2b, and 3b results in a twisted geometry modulating the interaction of the two aromatic rings, while, in the case of 1a, 2a, and 3a, the  $\pi$ -systems of pyrimidone and phenyl rings should exhibit greater overlap; these effects may be reflected in the optical spectra with changes in  $\lambda_{\text{max, abs}}$  or  $\varepsilon$ . Also of interest was the relative contribution or interaction of the two arms in the diphenyl derivatives, 1c, 2c, and 3c.

<sup>(6)</sup> George, S.; Nangia, A.; Bagieu-Beucher, M.; Masse, R.; Nicoud, J.-F. New J. Chem. 2003, 27, 568–576.

<sup>(7)</sup> Shavaleev, N. M.; Scopelliti, R.; Gumy, F.; Bünzli, J.-C. G. Eur. J. Inorg. Chem. 2008, 2008, 1523–1529.

<sup>(8)</sup> Zhao, Y.; Truhlar, D. Theor. Chim. Acta. 2008, 120, 215–241.

<sup>(9)</sup> Mitchell, R. H.; Iyer, V. S.; Khalifa, N.; Mahadevan, R.; Venugopalan, S.; Weerawarna, S. A.; Zhou, P. J. Am. Chem. Soc. 1995, 117, 1514–1532.

<sup>(10) (</sup>a) Kasende, O.; Zeegers-Huyskens, T. J. Mol. Struct. 1981, 75, 201–207. (b) Shoffner, J. P.; Bauer, L.; Bell, C. L. J. Heterocycl. Chem. 1970, 7, 479–485.

The spectra for  $1a-3c$  are depicted in Figure 3 with Table 1 summarizing the key spectral parameters ( $\lambda_{\text{max, abs}}$ ,  $\varepsilon$ ,  $\lambda_{\text{max, em}}$ ,  $\Phi_{\text{em}}$ ). Several trends are apparent that reflect the effects of the auxochromes as well as the molecular topology (i.e., 4,6-diphenyl vs 4-phenyl vs 6-phenyl derivatives); the 4,6-diphenylpyrimidones are presented first with the relative contributions of the two "arms" discussed below. The most pronounced spectral features are the bathochromic shift of  $\lambda_{\text{max, abs}}$  and hyperchromicity observed upon introduction of TFA. For example, 3c appears colorless in  $CH_2Cl_2$  and transforms to deep red when exposed to TFA (Figure 3D). The bathochromic shift was largest for 3c (126 nm), with a moderate shift for 2c (77 nm) and only a slight shift for 1c (17 nm) correlating well with the presence and relative strength of the electron-donating substituents. Conversely, 1c exhibits the largest enhancement of  $\varepsilon$  (nearly 3-fold), while 2c and 3c exhibit 2- and 1.5fold increases, respectively. Marked changes in fluorescence were also observed upon introduction of TFA.While 1c and 2c were weakly or nonemissive in  $CH<sub>2</sub>Cl<sub>2</sub>$  solutions, addition of TFA resulted in a significant enhancement of fluorescence; for 2c a 30-fold increase in  $\Phi_{em}$  was observed. Conversely, 3c displays a  $\Phi_{em}$  of 0.49 in CH<sub>2</sub>Cl<sub>2</sub> with exposure to TFA quenching the emission. The absorption spectra of the 4-phenyl and 6-phenyl derivatives (Figure 3B and 3C) reveal that the electronic transitions of the diphenyl derivatives more closely resemble those found for the 4-phenyl than for the 6-phenyl derivatives based on the position of  $\lambda_{\text{max, abs}}$  as well as the magnitude of the bathochromic and hyperchromic shifts (Table 1).

The molecular basis for the observed spectral behavior is not immediately apparent. While the bathochromic shifts are most likely the result of a decrease in the HOMO-LU-MO gap, the physical basis for the hyperchromicity is not clear. Protonation may serve to enhance the electronwithdrawing nature of the pyrimidone core lowering the LUMO and producing an intramolecular charge transferlike absorption. However, polarization of the HOMO and LUMO is associated with low  $\varepsilon$ ,<sup>11</sup> which is not observed in the present case. By considering the molecular orbital picture for 1a-3c in the neutral and protonated forms, we gain some insights into the electronic transitions of these chromophores. The equilibrium geometry of  $1a-3c$ in the neutral and protonated forms were calculated using DFT (M06) at the  $6-31G^*$  level.<sup>9</sup> The energy of the calculated HOMO $\rightarrow$ LUMO transitions correlates well with the experimental values of  $\lambda_{\text{max, abs}}$ . Figure 4 depicts the LUMO and three HOMOs for  $1a - c$  in the neutral and protonated forms; similar MO levels and topologies were found for  $2a - c$  and  $3a - c$ . Each of the occupied MOs is within 1 eV and therefore likely to contribute to the optical transitions observed in the UV-vis spectrum between 250 and 375 nm. Protonation leads to a redistribution of the atomic orbital contributions to each MO. The HOMO and  $HOMO^{-1}$  for neutral forms of 1a and 1c effectively



Figure 3. UV-vis and fluorescence spectra of  $1a-3c$  in  $CH_2Cl_2$ . The absorption and emission are modulated by protonation with TFA. In all cases, modest to large hyperchromic and bathochromic shifts are observed with TFA addition. For phenyl  $(1a-1c)$  and methoxyphenyl  $(2a-2c)$  derivatives, emission is enhanced by the addition of TFA; in the case of dimethylamino-substituted compounds  $3a-3c$ , emission is quenched by addition of TFA.

combine into the HOMO for the protonated forms. Thus, the nearly 3-fold enhancement of  $\varepsilon$  for the lowest energy transition can be rationalized, in part, on the basis of greater spatial overlap of the HOMO and LUMO for the protonated species. An additional contribution to the increase in ε upon protonation may arise from the  $HOMO^{-2}$  to LUMO transition, which for 1a and 1c is calculated to be within 0.8 and 0.3 eV, respectively. For the unprotonated species,  $HOMO^{-2}$  is largely  $\sigma$  in character and is orthogonal to the  $\pi$ -system resulting in poor overlap with the LUMO. On the other hand, in the protonated form, the  $HOMO^{-2}$  is  $\pi$  in nature and possesses good overlap with the LUMO and may contribute to the high observed  $\varepsilon$ . In the case of 1b, the lowest energy optical transition was not significantly enhanced upon TFA addition. Inspection of

<sup>(11) (</sup>a) Schulman, S. G.; Underberg, W. J. M. Anal. Chim. Acta 1979, 108, 249–254. (b) Wilson, J. N.; Bunz, U. H. F. J. Am. Chem. Soc. 2005, 127, 4124–4125.







Figure 4. Molecular orbital representations for 1a–c. Protonation results in a reorganization of atomic orbital contributions to the<br>VOMO VOMO – VUNCO  $HOMO$ ,  $HOMO^{-1}$ , and  $HOMO^{-2}$  which may be correlated to the observed hyperchromic and bathochromic shifts on the basis of improved orbital overlap and lower energy gaps.  $\Delta E_{\rm LUMO-HOMO}$  are given in Table 1.

the HOMO through  $HOMO^{-2}$  for 1b in the protonated and unprotonated forms shows that the occupied MOs remain largely localized to either the phenyl arm or the pyrimidone core. The small increase observed for  $\varepsilon$  likely results from the diminished n $\rightarrow \pi^*$  and increased  $\pi \rightarrow \pi^*$  contribution to the absorption band centered near 330 nm. The 6-phenylpyrimidone derivatives, 1b, 2b, and 3b, display the lowest quantum yields in their respective series. This may also be due to the disjoint FMOs; the excited state likely exhibits more CT character that may contribute to the lower  $\Phi_{em}$ .

In summary, we have synthesized and evaluated the optoelectronic properties of a series of highly chromic, proton responsive phenyl- and diphenylpyrimidones. The large hyperchromic and bathochromic shifts observed may be rationalized on the basis of the improved spatial overlap

of HOMO and LUMO. Additionally, examples of both "turn-on" and "turn-off" fluorescence were observed; high overall brightness ( $\varepsilon \times \Phi_{\text{em}}$ ) coupled with large on/off ratios makes these simple, compact fluorophores of potential interest as sensory materials. Applications of arylpyrimidone derivatives as self-reporting ligands are envisaged given the continued interest of this motif as a broadly active pharmacophore.

Acknowledgment. This research was supported by an American Cancer Society Institutional Research Grant.

Supporting Information Available. Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.